And the lightest beam is … cellular glass

A long time ago, cellular glass was a thermal insulation which is vapor tight and has a large compressive strength. Later on, I realized that it is a thermal insulating material which can replace bricks, it is a construction material. But recently, I learned as suggested by Michael Ashby that cellular glass is the lightest material between the ones which can support there own weight.

The following table shows a list of all kind of materials. We consider a beam with a certain span and width and allow a certain deflection under its own weight. The thickness is a free parameter. We calculate weight and also embodied energy, which is the primary energy needed to produce the beam. We have rescaled the weight by dividing by the weight of the GLAPOR PG600 beam.


Like can be observed, GLAPOR cellular glass is the lightest material that support its own weight but it has also the smallest embodied energy like shown in the GLAPOR cellular glass EPD. And in a near future, it will also be the cheapest material in the list.

This means that cellular glass can replace concrete in unloaded situations, when non-combustibility and water tightness are an iussue. Besides light, ecologic and cheap, cellular glass can be produced in about 10 hours while concrete takes several days.

Although this application of cellular glass is straightforward, it became only realistic after GLAPOR developed the continuous foaming process, delivering large boards upto 2.8m x 1.2m based on direct foamed recycled glass with prices below 200€/m3. The mould process and the cellular glass based on a special composition can never compete in this discipline.

2 thoughts on “And the lightest beam is … cellular glass

  1. Pingback: On the mechanical stability of cellular glass | BELGLAS BVBA

  2. Pingback: Light weight cellular glass most popular post | BELGLAS BVBA

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s