We found two nice innovations based on nanotechnology with BASF. Slentex and Slentite are respectively an non-organic and organic thermal insulation materials based on aerogel. Aerogel materials are microporous, which means they have cells in the nanometer range. In these cells, thermal gas conduction is strongly reduced, because the gas molecules have a much larger probality to collide with the cell wall than with another gas molecule. In cellular glass with cells of about 1mm, gas conduction disappears at about 1 mbar but in case of Slentite and Slentex, this situation is already present at atmospheric conditions. For that reason, they publish thermal conductivities of 0.017 and 0.019 W/mK respectively to compare with 0.040 – 0.050 W/mK for cellular glass.
VIP (vacuum insulated panel) thermal insulation with these materials as base material should reach 0.005 W/mK while the absolute pressure can be 10 mbar or a bit more. Today, we can buy thermal insulation with 0.055 W/mK to 0.005 W/mK or about a factor 11. This means that 1cm VIP is equivalent with 11cm GLAPOR, but I am sure that after 50 years GLAPOR measures exactly the same value while I doubt that the VIP will be lower than 0.017 W/mK. The foil around the VIP and the welding is the weak point. The future is in my opinion the fusion of all materials to remove the weak points.