
1 Introduction
1.1 Cellular Solids – Scaling of Properties
1.2 Liquid Foams – Precursors for Solid Foams
1.1 Cellular Solids – Scaling of Properties
1.2 Liquid Foams – Precursors for Solid Foams
2 Manufacturing
2.1 Ceramic Foams
2.2 Honeycombs
2.3 3D Periodic Strutures
2.4 Connected Fibers: Fiber Felts and Mats
2.5 Microcellular Ceramics from Wood
2.6 Carbon Foams
2.7 Glass Foams
2.8 Hollow Spheres
2.9 Cellular Concrete
2.1 Ceramic Foams
2.2 Honeycombs
2.3 3D Periodic Strutures
2.4 Connected Fibers: Fiber Felts and Mats
2.5 Microcellular Ceramics from Wood
2.6 Carbon Foams
2.7 Glass Foams
2.8 Hollow Spheres
2.9 Cellular Concrete
3 Structure
3.1 Characterization of Structure and Morphology
3.2 Modelling Structure-Property Relationships in Random Cellular Material
3.1 Characterization of Structure and Morphology
3.2 Modelling Structure-Property Relationships in Random Cellular Material
4 Properties
4.1 Mechanical Properties
4.2 Permeability
4.3 Thermal Properties
4.4 Electrical Properties
4.5 Acoustic Properties
4.1 Mechanical Properties
4.2 Permeability
4.3 Thermal Properties
4.4 Electrical Properties
4.5 Acoustic Properties
5 Applications
5.1 Liquid Metal Filtration
5.2 Gas (Particulate) Filtration
5.3 Kiln Furnitures
5.4 Heterogeneously Catalysed Processes with Porous Cellular Ceramic Monoliths
5.5 Porous Burners
5.6 Acoustic Transfer in Ceramic Surfac Burners
5.6 Solar Radiation Conversion
5.7 Biomedical Applications: Tissue Engineering
5.9 Interpenetrating Composites
5.10 Porous Media in Internal Combustion Engines
5.11 Other Developments and Special Applications
5.1 Liquid Metal Filtration
5.2 Gas (Particulate) Filtration
5.3 Kiln Furnitures
5.4 Heterogeneously Catalysed Processes with Porous Cellular Ceramic Monoliths
5.5 Porous Burners
5.6 Acoustic Transfer in Ceramic Surfac Burners
5.6 Solar Radiation Conversion
5.7 Biomedical Applications: Tissue Engineering
5.9 Interpenetrating Composites
5.10 Porous Media in Internal Combustion Engines
5.11 Other Developments and Special Applications
Concluding Remarks