Kinetic energy absorption by cellular glass in the Formule 1 racing world

logo_smallMay 1, is the day we all think on the tragedy of this very skilled and friendly F1 driver Ayrton Senna. And that is probably the reason kinetic energy absorption crossed my mind in my previous post, although the idea was already published in a US2981317 patent about safety seats in 1961. In this post, I want to show my point with real numbers with a calculation in an Excel spreadsheet.

The following example could be tested. I assume a car at 300 km/h and a total weight of 1000 kg. I guess that this car hits a cellular glass wall and a cross section of 2 by 0.2 is really hitting the cellular glass wall. The used cellular glass has a compressive strength of 3 N/mm². The car will stop completely after crushing 3 m cellular glass and the deceleration will be about 250 g. A Head Injury Criterion (HIC) of 250 g should be the limit for concussions. An internal recoil of the brains will not be present because the cellular glass is entirely non-elastic, the kinetic energy is converted in breakage energy for the cellular glass.

Cellular glass, produced from only recycled glass (without remelting) by for example GLAPOR can be used for this application, costing less than 450 € for one running meter. The cellular glass is non combustible, can always be recycled and is water proof. Having an idea is always easy but only the F1 organization can bring it into real life. Bernie, please wake up.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s